High Efficiencies in Nanoscale Poly(3-Hexylthiophene)/Fullerene Solar Cells
نویسندگان
چکیده مقاله:
A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified with either hydrophobic- or hydrophilic-based copolymers. It was originated from ever increasing trend of fill factor (FF) and increasing or marginally decreasing trend of short circuit current density (Jsc). Although PCEs were higher in untreated hydrophobic-compatibilized devices, the hydrophilic-compatibilized systems further benefited from thermal and solvent treatments. The vertical homogeneity increased for compatibilized BHJs during annealing processes, leading to very high FFs around 70%. The maximum values of Jsc and PCE for the well-controlled photovoltaic systems were 12.10 mA/cm2 and 4.85%, respectively.
منابع مشابه
High efficiency polymer solar cells with vertically modulated nanoscale morphology.
Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer riche...
متن کاملNanoscale photon management in silicon solar cells
Related Articles Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells J. Vac. Sci. Technol. A 30, 040802 (2012) Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates J. Vac. Sci. Technol. A 30, 04D108 (2012) Room temperature atomic layer deposition of Al2O3 and replication of butterfly wings for photovoltaic application...
متن کاملReporting solar cell efficiencies in Solar Energy Materials and Solar Cells
In order to improve the accuracy, validity, reliability and reproducibility of reported power conversion efficiencies for solar cells, the journal, Solar Energy Materials and Solar Cells (SOLMAT), wishes to define how power conversion efficiencies should be reported. This expands upon what is specified in our Guide for Authors. This editorial also serves as a guide on how efficiency data should...
متن کاملMulti-busbar solar cells and modules: high efficiencies and low silver consumption
Ideally, future photovoltaic modules show higher power output without increasing costs during cell production or module interconnection. Today significant losses occur during stringing the cells in a module by using standard 3busbar technology. In this paper an elegant approach for a front side design is discussed by using more busbars than the widely used 3-busbar design for the solar cell fro...
متن کاملBandtail Limits to Solar Conversion Efficiencies in Amorphous Silicon Solar Cells
We describe a model for a-Si:H based pin solar cells derived primarily from valence bandtail properties. We show how hole drift-mobility measurements and measurements of the temperature-dependence of the open-circuit voltage VOC can be used to estimate the parameters, and we present VOC(T) measurements. We compared the power density under solar illumination calculated with this model with publi...
متن کاملSupramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells
Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Althou...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 16 شماره 1
صفحات 1- 12
تاریخ انتشار 2020-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023